Zhdanov sequence is even) as well as the cubic (∞) structure will be generated in this way. The 'parent polytype' could thus be formed from the $2 H$ structure.

All the above considerations deal only with the geometrical framework of polytypism in ZnS crystals. Further experiments are in progress in order to ascertain the physical mechanism underlying the slip process.

Actually it seems that all polytypes in vapour-phase grown crystals are even*. In this Laboratory, altogether about 35 polytypes were found, with 21 different layer periodicities, all being even. The literature on polytypes in vapour-phase grown ZnS seems also to confirm this rule, except for a very early publication (Strock \& Brophy, 1955) on a single extremely small specimen ($0.1 \times 0.01 \mathrm{~mm}$) which was reported to include altogether nine structures.

* Uneven polytypes $9 R, 15 R$ and $21 R$ were found in ZnS minerals. A $27 L$ polytype reported by two of us (O.B. \& I.T.S.) was later found to be a $26 L(17423)$ polytype.

Direct observations in this Laboratory (to be published) revealed that the hexagonal 2 H structure can actually be transformed to polytypes, and that this transformation takes place by the periodic slip process. The overall route of polytype formation is therefore probably the following: hexagonal - parent polytype polytype family.

References

Brafman, O., Alexander, E. \& Steinberger, I. T. (1967). Acta Cryst. 22, 347.
Brafman, O. \& Steinberger, I. T. (1966). Phys. Rev. 143, 501.

Farkas-Jahnke, M. (1965). Acta Cryst. 18, 571.
Krishna, P. \& Verma, A. R. (1965). Z. Kristallogr. 121, 36.
Mardix, S., Brafman, O. \& Steinberger, I. T. (1967). Acta Cryst. 22, 000.
Mardix, S. \& Steinberger, I. T. (1966). Israel J. Chem. 3, 243.

Strock, W. \& Brophy, V. A. (1955). Amer. Min. 40, 94.
Verma, A. R. \& Krishna, P. (1966). Polymorphism and Polytypism in Crystals. New York: John Wiley.

Reinvestigation of the Crystal Structure of Ammonium Bromochloroiodate(I), $\mathbf{N H}_{\mathbf{4}} \mathbf{B r I C l}$, at $140^{\circ} \mathrm{K}$

By Tiny Migchelsen and Aafje Vos
Laboratorium voor Structuurchemie, Rijksuniversiteit Groningen, Bloemsingel 10, Groningen, The Netherlands

(Received 5 September 1966)

Abstract

Reinvestigation of the crystal structure of $\mathrm{NH}_{4} \mathrm{BrICl}$ at $140^{\circ} \mathrm{K}$ shows that the $(\mathrm{BrICl})^{-}$ions are statistically distributed in the crystal. Owing to this disorder no accurate values could be obtained for the bond lengths. The discussion of the observed average structure indicates, however, that for (BrICl$)^{-}$ ions with an orientation as reported earlier by Mooney, the I-Cl bond is much longer (ca. $0.5 \AA$) than the value which Mooney observed ($2 \cdot 38 \AA$). The $\mathrm{I}-\mathrm{Br}$ distance is comparable to Mooney's value, $2 \cdot 50 \AA$.

Description of the structure

As part of a programme to obtain accurate values for bond lengths and angles in polyhalide ions consisting of different halogen atoms ($\mathrm{KICl}_{4} . \mathrm{H}_{2} \mathrm{O}$, Elema, de Boer \& Vos, 1963; $\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4} \mathrm{ICl}_{2}$, Visser \& Vos, 1964), the structure of $\mathrm{NH}_{4} \mathrm{BrlCl}$ (Mooney, 1937) was reinvestigated at $140^{\circ} \mathrm{K}$.

The structure as reported by Mooney is shown in Fig.1. The present refinement shows that accurate values for the bond lengths and angles cannot be obtained because of disorder in the crystals. The discussion given in the present paper indicates, however, that for the ($\mathrm{Br}-\mathrm{I}-\mathrm{Cl})^{-}$ion shown in Fig. 1, the I-Cl bond is much longer, approximately $0.5 \AA$, than the value observed by Mooney, $2 \cdot 38 \AA$, and considerably longer than the sum of the covalent radii, $2 \cdot 33 \AA$. The I-Br distance is comparable to Mooney's value, $2 \cdot 50 \AA$.

As in the isomorphous compound $\mathrm{CsI}_{2} \mathrm{Br}$ (Carpenter, 1966) there is one short intermolecular distance, $\mathrm{I}(3) \cdots \operatorname{Br}(1) \simeq 3 \cdot 64 \AA($ van der Waals distance $4 \cdot 10 \AA)$. This distance is observed in a nearly linear $\mathrm{I} \cdots \mathrm{Br}-\mathrm{I}-\mathrm{Cl}$ chain (Fig. 1, Table 3), suggesting that the bonding may be described as 4 -center, 6 -electron bonding (Hach \& Rundle, 1951; Pimentel, 1951).

Experimental

Crystals were prepared according to Mooney's method. The halogen composition of the sample found by chemical analysis ($\mathrm{I}=46 \cdot 9, \mathrm{Br}=31 \cdot 1, \mathrm{Cl}=13 \cdot 6 \%$) showed reasonable agreement with the formula $\mathrm{NH}_{4} \mathrm{BrICl}(\mathrm{I}=$ $48 \cdot 7, \mathrm{Br}=30 \cdot 7, \mathrm{Cl}=13 \cdot 6 \%)$.
The crystallographic data were obtained from Weissenberg photographs taken at $140^{\circ} \mathrm{K}$. The crystals are orthorhombic; the systematic absences indicate as pos-
sible space groups $P_{n m a}$ and $P n 2_{1} a$. Inspection of the $h k 0$ and 0 kl reflexions showed that all reflexions with k even (or odd) and common h and l, have the same intensity, except for general variations with $\sin \theta / \lambda$. This strongly suggests a systematic location of the four $\mathrm{NH}_{4} \mathrm{BrICl}$ groups on mirror planes at $y=\frac{1}{4}$ and $y=-\frac{1}{4}$, as required by the special position with symmetry m in Pnma. Space group Pnma was therefore adopted during the structure determination. Because of the y values being fixed, only the projection along y was refired. The difficulties encountered during the structure refinement (see below) could not be explained

Fig. 1. Structure of $\mathrm{NH}_{4} \mathrm{BrICl}$ as reported by Mooney. The heavily outlined atoms lie at $y=\frac{1}{4}$, the lightly outlined ones at $y=-\frac{1}{4}$. The majority of the $(\mathrm{BrICl})^{-}$ions in our disordered crystals are oriented as shown in the Figure; a minority of these ions have the reverse orientation.

(a)

(b)

Fig. 2. Difference maps for $\mathrm{NH}_{4} \mathrm{BrICl}$ (a) after isotropic refinement without assuming disorder, (b) after anisotropic refinement with coinciding atoms, but with 25% of the $(\mathrm{BrICl})^{-}$ions in the reverse orientation. The crosses indicate the mean atomic positions. Contours are drawn at intervals of $2 \mathrm{e} . \AA^{-2}$, the zero line is dotted, and negative contours are given by broken lines.
by a wrong choice of space group, as $P_{n m a}$ and $P_{n 2} a$ have the same symmetry in [010] projection (plane group pgg).

The experimental data used during the refinement are summarized in Table 1. The absorption corrections were calculated with a program written according to the Busing \& Levy (1957) scheme; the dimensions of the bounding planes of the crystal were measured as accurately as possible.

Table 1. Observed data for $\mathrm{NH}_{4} \mathrm{BrICl}$ at $140^{\circ} \mathrm{K}$

Observed data	Method used
Space group Pnma	Weissenberg photographs
$Z=4$, at m	Ni-filtered Cu radiation
$a=10 \cdot 280 \AA$	Calibration with NaCl reflexion spots
$b=6 \cdot 075$	$\lambda(\mathrm{Cu} \mathrm{K} \mathrm{\alpha})=1 \cdot 5418, \lambda\left(\mathrm{Cu} \mathrm{K} \mathrm{\alpha}_{1}\right)=1 \cdot 54051$
$c=8 \cdot 648$	$\lambda(\mathrm{Cu} \mathrm{K} \mathrm{\alpha})=1 \cdot 54433 \AA$
e.s.d. 0.03%	Least-squares adjustment of 80
	reflexions 0 kl and $h k 0$
163 reflexions $h 0 l$	Integrated and ordinary photographs,
	Zr-filtered Mo radiation.
	Corrections for Lp and absorption
	$(\mu d \simeq 3 \cdot 4)$.

Refinement

The [010] projection was refined by least-squares methods. The calculations were done on a TR4 computer with a program written by Palm \& Peterse according to Cruickshank's (1961) scheme; scattering curves were taken from Moore (1963).

After the isotropic refinement ($R=0.089$), disorder in the crystals was indicated by a remarkably high electron density at the chlorine position. This is illustrated by the difference map in Fig. 2(a), which shows a maximum for chlorine in spite of the low thermal parameter, $B=0 \cdot 1 \AA^{2}$, taken into account for this atom. The effect was considered significant as similar results had been obtained earlier in a refinement with data collected at room temperature for a crystal from a different sample. The high electron density near chlorine was tentatively ascribed to a minority of (BrICl$)^{-}$ ions (ions B) having an orientation the reverse of that of the trihalide ions (ions A) shown in Fig. 1. A and B were assumed to be statistically distributed in the crystal. Owing to this statistical distribution an average structure is obtained consisting of three sets of two almost coinciding halogen atoms; for each of the sets only weighted mean positions can be found. The percentage of B in the average structure was estimated by trial and error, making use of anisotropic least-

Table 2. Mean atomic parameters after anisotropic refinement (see text)
The labelling of the atoms corresponds to Fig. 1. The standard deviations as calculated by the least-squares program are given in brackets.

	x	y	z	B	U_{11}	U_{33}	$2 U_{13}$
	x	0.2500	$0.2642(4)$		$0.0126(13)$	$0.0136(13)$	$-0.0078(24)$
$\mathrm{Br}(1)$	$0.4242(4)$	0.2500	$0.4478(2)$		$0.0115(5)$	$0.0159(6)$	$0.0002(13)$
$\mathrm{I}(1)$	$0.6180(2)$	0.2500					
$\mathrm{Cl}(1)$	$0.8371(5)$	0.2500	$0.6473(7)$		$0.0100(17)$	$0.0126(19)$	$0.0045(32)$
$\mathrm{N}(1)$	$0.3466(36)$	0.7500	$0.0401(41)$	2.07			

squares refinements; the percentage assumed for B was represented by the scattering factors used for the composite terminal atoms in the trihalide ion. For approximately 25% of B the best result was obtained, viz. a low disagreement index $R(0.061)$, and comparable values for the thermal parameters of the 'chlorine' and 'bromine' ends of the ion. The thermal parameters and weighted mean positions of the composite atoms are listed in Table 2; the corresponding interatomic distances are given in Table 3. The difference map based on the results of the above refinement is shown in Fig. 2(b); the highest maxima (minima) are approximately 3.5 times the e.s.d. The structure factors in Table 4 are based on the parameters listed in Table 2.

Table 3. Interatomic distances (smaller than $4 \AA$) and angles for the ions shown in Fig. 1
The values are based on the parameters in Table 2.

$\mathrm{I}(1)-\mathrm{Br}(1)$	$2.55 \AA$	$\mathrm{N}(1) \cdot \cdots \mathrm{Cl}(4)$	$3.38 \AA$
$\mathrm{I}(1)-\mathrm{Cl}(1)$	$2 \cdot 84$	$\mathrm{N}(1) \cdots \cdot \mathrm{Br}(1)$	$3 \cdot 69$
$\mathrm{Cl}(1) \cdots \mathrm{Br}(4)$	$3 \cdot 67$	$\mathrm{N}(1) \cdots \mathrm{Cl}(2)$	$3 \cdot 29$
$\operatorname{Br}(1) \cdots \mathrm{I}(3)$	$3 \cdot 64$	$\mathrm{N}(1) \cdots \mathrm{I}(3)$	$3 \cdot 84$
$\mathrm{I}(1) \cdots \mathrm{I}(2)$	3.99	$\mathrm{N}(3) \cdots \mathrm{Cl}(2)$	$3 \cdot 45$
$\operatorname{Br}(1) \cdots \mathrm{I}(2)$	3.95	$\mathrm{N}(3) \cdots \cdot \mathrm{Br}(1)$	3.67
		$\mathrm{N}(3) \cdots \operatorname{Br}(3)$	$3 \cdot 54$
$\mathrm{Cl}(1)-\mathrm{I}(1)-\mathrm{Br}(1)$	179°		
$\mathrm{I}(1)--\mathrm{Br}(1)-\mathrm{I}(3)$	172		

Table 4. Observed and calculated structure factors
In order to obtain F on the absolute scale, the values in the Table must be divided by 10 .

Discussion of the average structure

From the average structure a great number of models for the ions A and B may be deduced depending on the amount of splitting assumed for the three composite atoms. If all pairs of fractional atoms are supposed to coincide with their weighted mean position, the bond lengths in A and B are as follows:

$$
\begin{aligned}
& A \mathrm{Br}_{2.55} \mathrm{I}_{2.84} \mathrm{Cl} \\
& B \mathrm{Cl}_{2.55} \mathrm{I}_{2.84} \mathrm{Br}
\end{aligned}
$$

The differences between the lengths of corresponding bonds for the two orientations of the ion may be ascribed to the crystal field. The value of the difference, $0.29 \AA$, is, however, rather high in comparison with that observed for the I_{3}^{-}ion in the isomorphous compound $\mathrm{CsI}_{3}, 0.20 \AA$ (Tasman \& Boswijk, 1955). A model for which the bond length differences between A and B are $0.20 \AA$ can be obtained by assuming small separations of the fractional atomic parts, for instance $0 \cdot 10 \AA$ in the bond direction for all three composite atoms. The atomic positions of this model are schematically shown in Fig.3(a); the vibration ellipsoids of the split atoms are given in Fig. 3(b) and in Table 5. The assumed structure model seems reasonable in view of (1) the vibration ellipsoids (the values for chlorine are inaccurate; for errors see Table 2) and (2) the fact that the van der Waals radius of bromine is larger than

Fig. 3. Possible model for ions A and B. (a) Positions of the fractional atoms. Dashed lines indicate weighted mean atomic positions, for clarity of the figure the splitting of the fractional atoms is on an enlarged scale. (b) r.m.s. displacements due to thermal motion of the fractional atoms.

Table 5. Thermal parameters of ion A

	Before splitting			After splitting*		
	U_{11}	U_{33}	$2 U_{13}$	U_{11}	U_{33}	$2 U_{13}$
Br	$0.0126(13)$	$0.0136(13)$	$-0.0078(24)$	0.0119	0.0131	-0.0090
I	$0.0115(5)$	$0.0159(6)$	$0.0002(13)$	0.0104	0.0151	-0.0016
Cl	$0.0100(17)$	$0.0126(19)$	$0.0045(32)$	0.0085	0.0117	0.0021

* See Fig.3(a). The reduction of the thermal parameters in the bond direction was calculated with the formula

$$
\Delta U=\frac{w_{1}}{w_{1}+w_{2}}\left(\frac{w_{2} \Delta l}{w_{1}+w_{2}}\right)^{2}+\frac{w_{2}}{w_{1}+w_{2}}\left(\frac{w_{1} \Delta l}{w_{1}+w_{2}}\right)^{2},
$$

where Δl is the splitting in \AA, and w_{1} and w_{2} are the weights of the fractional atoms.

Table 6. Comparison of trihalide ions

Compound	Ion	Bond lengths (Å)		Elongation* (\AA)		Sum (Å)
See footnote \dagger	I-I-I	2.92	2.92	$0 \cdot 26$	0.26	0.52
CsI_{3}	I-I-I	$2 \cdot 83$	3.03	0.17	0.37	0.54
$\mathrm{CsI}_{2} \mathrm{Br}$	$\mathrm{I}-\mathrm{I}-\mathrm{Br}$	2.78	$2 \cdot 91$	$0 \cdot 12$	0.43	$0 \cdot 55$
$\mathrm{NH}_{4} \mathrm{BrICl}$	$\mathrm{Br}-\mathrm{I}-\mathrm{Cl}$	2.51	2.91	0.03	0.59	$0 \cdot 62+$

* Relative to the bond lengths of gaseous molecules $\mathrm{I}_{2}, \mathrm{IBr}$ and ICl .
\dagger Average values from $\mathrm{As}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{4} \mathrm{I}_{3}, \mathrm{~N}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{4} \mathrm{I}_{7}$ and $\mathrm{N}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{4} \mathrm{I}_{3}$ (Rundle, 1961 ; Migchelsen \& Vos, 1967).
\ddagger Values are approximate because of disorder.
that of chlorine. The bond lengths listed for ion A in Fig. 3(a) are compared with those of other trihalide ions in Table 6. The $(\mathrm{BrICl})^{-}$ion in $\mathrm{NH}_{4} \mathrm{BrICl}$ fits well in the series. The present results suggest that the $\mathrm{I}-\mathrm{Cl}$ bond in $\mathrm{NH}_{4} \mathrm{BrICl}(A)$ has a smaller bond order than the $\mathrm{I}-\mathrm{Br}$ bond in the isomorphous compound $\mathrm{CsI}_{2} \mathrm{Br}$ (Carpenter, 1966).

We are grateful to Professor E. H.Wiebenga for many valuable discussions and to Mr F. van Bolhuis and Mr J.Y. Talstra for their assistance during the experimental work. Calculations were done at the Groningen University Computing Centre. The work was supported by the Netherlands Organization for the Advancement of Pure Research (Z.W.O.).

References

Busing, W. R. \& Levy, H. A. (1957). Acta Cryst. 10, 180. Carpenter, G. B. (1966). Acta Cryst. 20, 330.
Cruickshank, D. W. J. (1961). In Computing Methods and the Phase Problem in X-ray Crystal Analysis. Oxford: Pergamon Press.
Elema, R. J., de Boer, J. L. \& Vos, A. (1963). Acta Cryst. 16, 243.
Hach, R. J. \& Rundle, R. E. (1951). J. Amer. Chem. Soc. 73, 4321.
Migchelsen, T. \& Vos, A. (1967). To be published.
Mooney, R. C. L. (1937). Z. Kristallogr. 98, 324.
Moore, F. H. (1963). Acta Cryst. 16, 1169.
Pimentel, G. C. (1951). J. Chem. Phys. 19, 446.
Rundle, R. E. (1961). Acta Cryst. 14, 585.
Tasman, H. A. \& Boswijk, K. H. (1955). Acta Cryst. 8, 59.
Visser, G. J. \& Vos, A. (1964). Acta Cryst. 17, 1336.

The Crystal Structure of Sodium Tetraborate

By A.Hyman*, A. Perloff, F. Mauer and S. Block
National Bureau of Standards, Washington, D.C. 20234, U.S.A.

(Received 6 September 1966)
Single crystals of the high-temperature form of sodium tetraborate, $\mathrm{Na}_{2} \mathrm{O} .4 \mathrm{~B}_{2} \mathrm{O}_{3}$, have been synthesized and studied. The structure has been determined by the method of symbolic addition. The space group is $P 2_{1} / a$ with unit-cell dimensions $a=6.507 \pm 0.001, \dagger b=17.796 \pm 0.002, c=8.377 \pm 0.001 \AA ; \beta=96^{\circ} 34^{\prime} \pm$ $2^{\prime} ; Z=4$. The structure consists of two infinite, independent, and interlinking boron-oxygen networks, each containing alternating single and double rings. The sodium atoms serve to hold the networks together through coordination with oxygen atoms.

Introduction

This study has been made as part of a program designed for a better understanding of the structural principles underlying borate chemistry. There is additional interest in anhydrous borates with greater than 50 mole $\% \mathrm{~B}_{2} \mathrm{O}_{3}$ since these compounds readily form glasses. Several laboratories have been investigating these structures. Krogh-Moe (1959, 1960, 1962, 1965)

[^0]has reported structures of anhydrous borates of K and $\mathrm{Rb}, \mathrm{Cs}, \mathrm{Li}$, and Ag . The structures of strontium 1:2 borate (Krogh-Moe, 1964; Perloff \& Block, 1966), lead 1:2 borate (Perloff \& Block, 1966), barium 1:2 borate (Block \& Perloff, 1965) and cadmium 1:2 borate (Ihara \& Krogh-Moe, 1966) have also been determined. The structure of $\mathrm{Na}_{2} \mathrm{O} \cdot 4 \mathrm{~B}_{2} \mathrm{O}_{3}$ and its relation to several other borates are discussed here.
$\mathrm{Na}_{2} \mathrm{O} .4 \mathrm{~B}_{2} \mathrm{O}_{3}$ has been reported (Morey \& Merwin, 1936) to exist in two forms. The present work refers to the high-temperature stable form which is usually obtained by crystallization from a melt.

[^0]: * Present address: University of Maryland, B.C., Baltimore, Maryland.
 \dagger Estimated uncertainty.

